3.4.1 \(\int \frac {x^6}{1-2 x^4+x^8} \, dx\) [301]

Optimal. Leaf size=29 \[ \frac {x^3}{4 \left (1-x^4\right )}+\frac {3}{8} \tan ^{-1}(x)-\frac {3}{8} \tanh ^{-1}(x) \]

[Out]

1/4*x^3/(-x^4+1)+3/8*arctan(x)-3/8*arctanh(x)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {28, 294, 304, 209, 212} \begin {gather*} \frac {3 \text {ArcTan}(x)}{8}+\frac {x^3}{4 \left (1-x^4\right )}-\frac {3}{8} \tanh ^{-1}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^6/(1 - 2*x^4 + x^8),x]

[Out]

x^3/(4*(1 - x^4)) + (3*ArcTan[x])/8 - (3*ArcTanh[x])/8

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rubi steps

\begin {align*} \int \frac {x^6}{1-2 x^4+x^8} \, dx &=\int \frac {x^6}{\left (-1+x^4\right )^2} \, dx\\ &=\frac {x^3}{4 \left (1-x^4\right )}+\frac {3}{4} \int \frac {x^2}{-1+x^4} \, dx\\ &=\frac {x^3}{4 \left (1-x^4\right )}-\frac {3}{8} \int \frac {1}{1-x^2} \, dx+\frac {3}{8} \int \frac {1}{1+x^2} \, dx\\ &=\frac {x^3}{4 \left (1-x^4\right )}+\frac {3}{8} \tan ^{-1}(x)-\frac {3}{8} \tanh ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 35, normalized size = 1.21 \begin {gather*} \frac {1}{16} \left (-\frac {4 x^3}{-1+x^4}+6 \tan ^{-1}(x)+3 \log (1-x)-3 \log (1+x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^6/(1 - 2*x^4 + x^8),x]

[Out]

((-4*x^3)/(-1 + x^4) + 6*ArcTan[x] + 3*Log[1 - x] - 3*Log[1 + x])/16

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 42, normalized size = 1.45

method result size
risch \(-\frac {x^{3}}{4 \left (x^{4}-1\right )}-\frac {3 \ln \left (1+x \right )}{16}+\frac {3 \ln \left (-1+x \right )}{16}+\frac {3 \arctan \left (x \right )}{8}\) \(30\)
default \(-\frac {1}{16 \left (-1+x \right )}+\frac {3 \ln \left (-1+x \right )}{16}-\frac {x}{8 \left (x^{2}+1\right )}+\frac {3 \arctan \left (x \right )}{8}-\frac {1}{16 \left (1+x \right )}-\frac {3 \ln \left (1+x \right )}{16}\) \(42\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^8-2*x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/16/(-1+x)+3/16*ln(-1+x)-1/8*x/(x^2+1)+3/8*arctan(x)-1/16/(1+x)-3/16*ln(1+x)

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 29, normalized size = 1.00 \begin {gather*} -\frac {x^{3}}{4 \, {\left (x^{4} - 1\right )}} + \frac {3}{8} \, \arctan \left (x\right ) - \frac {3}{16} \, \log \left (x + 1\right ) + \frac {3}{16} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

-1/4*x^3/(x^4 - 1) + 3/8*arctan(x) - 3/16*log(x + 1) + 3/16*log(x - 1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 46 vs. \(2 (21) = 42\).
time = 0.33, size = 46, normalized size = 1.59 \begin {gather*} -\frac {4 \, x^{3} - 6 \, {\left (x^{4} - 1\right )} \arctan \left (x\right ) + 3 \, {\left (x^{4} - 1\right )} \log \left (x + 1\right ) - 3 \, {\left (x^{4} - 1\right )} \log \left (x - 1\right )}{16 \, {\left (x^{4} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

-1/16*(4*x^3 - 6*(x^4 - 1)*arctan(x) + 3*(x^4 - 1)*log(x + 1) - 3*(x^4 - 1)*log(x - 1))/(x^4 - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.06, size = 32, normalized size = 1.10 \begin {gather*} - \frac {x^{3}}{4 x^{4} - 4} + \frac {3 \log {\left (x - 1 \right )}}{16} - \frac {3 \log {\left (x + 1 \right )}}{16} + \frac {3 \operatorname {atan}{\left (x \right )}}{8} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(x**8-2*x**4+1),x)

[Out]

-x**3/(4*x**4 - 4) + 3*log(x - 1)/16 - 3*log(x + 1)/16 + 3*atan(x)/8

________________________________________________________________________________________

Giac [A]
time = 3.02, size = 31, normalized size = 1.07 \begin {gather*} -\frac {x^{3}}{4 \, {\left (x^{4} - 1\right )}} + \frac {3}{8} \, \arctan \left (x\right ) - \frac {3}{16} \, \log \left ({\left | x + 1 \right |}\right ) + \frac {3}{16} \, \log \left ({\left | x - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

-1/4*x^3/(x^4 - 1) + 3/8*arctan(x) - 3/16*log(abs(x + 1)) + 3/16*log(abs(x - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 23, normalized size = 0.79 \begin {gather*} \frac {3\,\mathrm {atan}\left (x\right )}{8}-\frac {3\,\mathrm {atanh}\left (x\right )}{8}-\frac {x^3}{4\,\left (x^4-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^8 - 2*x^4 + 1),x)

[Out]

(3*atan(x))/8 - (3*atanh(x))/8 - x^3/(4*(x^4 - 1))

________________________________________________________________________________________